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Abstract. We introduce an approach for 3D segmentation and quantifi-
cation of vessels. The approach is based on a new 3D cylindrical paramet-
ric intensity model, which is directly fit to the image intensities through
an incremental process based on a Kalman filter. The model has been
successfully applied to segment vessels from 3D MRA images. Our ex-
periments show that the model yields superior results in estimating the
vessel radius compared to approaches based on a Gaussian model. Also,
we point out general limitations in estimating the radius of thin vessels.

1 Introduction

Heart and vascular diseases are one of the main causes for the death of women
and men in modern society. An abnormal narrowing of arteries (stenosis) caused
by atherosclerosis is one of the main reasons for these diseases as the essential
blood flow is hindered. Especially, the blocking of a coronary artery can lead
to a heart attack. In clinical practice, images of the human vascular system are
acquired using different imaging modalities, for example, ultrasound, magnetic
resonance angiography (MRA), X-ray angiography, or ultra-fast CT. Segmen-
tation and quantification of vessels (e.g., estimation of the radius) from these
images is crucial for diagnosis, treatment, and surgical planning.

The segmentation of vessels from 3D medical images, however, is difficult and
challenging. The main reasons are: 1) the thickness (radius) of vessels depends
on the type of vessel (e.g., relatively small for coronary arteries and large for
the aorta), 2) the thickness typically varies along the vessel, 3) the images are
noisy and partially the boundaries between the vessels and surrounding tissues
are difficult to recognize, and 4) in comparison to planar structures depicted in
2D images, the segmentation of curved 3D structures from 3D images is much
more difficult. Previous work on vessel segmentation from 3D image data can be
divided into two main classes of approaches, one based on differential measures
(e.g., Koller et al. [6], Krissian et al. [7], Bullitt et al. [2]) and the other based
on deformable models (e.g., Rueckert et al. [10], Noordmans and Smeulders [8],
Frangi et al. [3], Gong et al. [5]). For a model-based 2D approach for measuring
intrathoracic airways see Reinhardt et al. [9]. The main disadvantage of differ-
ential measures is that only local image information is taken into account, and



Fig. 1. Intensity plots of 2D slices of a thin vessel in the pelvis (left), the artery iliaca
communis of the pelvis (middle), and the aorta (right) in 3D MR images.

therefore these approaches are relatively sensitive to noise. On the other hand,
approaches based on deformable models generally exploit contour information of
the anatomical structures, often sections through vessel structures, i.e. circles or
ellipses. While these approaches include more global information in comparison
to differential approaches, only 2D or 3D contours are taken into account.

We have developed a new 3D parametric intensity model for the segmenta-
tion of vessels from 3D image data. This analytic model represents a cylindrical
structure of variable radius and directly describes the image intensities of vessels
and the surrounding tissue. In comparison to previous contour-based deformable
models much more image information is taken into account which improves the
robustness and accuracy of the segmentation result. In comparison to previ-
ously proposed Gaussian shaped models (e.g., [8],[5]), the new model represents
a Gaussian smoothed cylinder and yields superior results for vessels of small,
medium, and large sizes. Moreover, the new model has a well defined radius. In
contrast, for Gaussian shaped models the radius is often heuristically defined,
e.g., using the inflection point of the Gaussian function. We report experiments
of successfully applying the new model to segment vessels from 3D MRA images.

2 3D Parametric Intensity Model for Tubular Structures

2.1 Analytic Description of the Intensity Structure

The intensities of vessels are often modeled by a 2D Gaussian function for a
2D cross-section or by a 3D Gaussian line (i.e. a 2D Gaussian swept along the
third dimension) for a 3D volume (e.g., [8],[7],[5]). However, the intensity profile
of 2D cross-sections of medium and large vessels is plateau-like (see Fig. 1),
which cannot be well modeled with a 2D Gaussian function. Therefore, to more
accurately model vessels of small, medium, and large sizes, we propose to use
a Gaussian smoothed 3D cylinder, specified by the radius R (thickness) of the
vessel segment and Gaussian smoothing o. A 2D cross-section of this Gaussian
smoothed 3D cylinder is defined as

gpisk (z,y, R, 0) = Disk (z,y, R) * G5 (z,y) (1)

where * denotes the 2D convolution, Disk (z,y, R) is a two-valued function with
value 1 if » < R and 0 otherwise (for r = /22 + y2), as well as the 2D Gaus-

sian function G2P(z,y) = G, (z) G, (y), where G, (z) = ( 27r<7)_1 e % By



exploiting the symmetries of the disk and the 2D Gaussian function as well as
the separability of the 2D convolution, we can rewrite (1) as

R
gpisk (z,y,R,0) =2 /_R Gy(r—n) ¢a(vR2 - 772) dn
—(®, (r+R) — &, (r — R)) (2)

using the Gaussian error function é (z) = f_EOO (27r)_1/2 e~€/2 d¢ and &, (z) =
& (z/0). Unfortunately, a closed form of the integral in (2) is not known. There-
fore, the exact solution of a Gaussian smoothed cylinder cannot be expressed
analytically and thus is computationally expensive. Fortunately, in [1] two ap-
proximations gpisk< and gpisk> Of gpisk, are given for the cases R/o < Tg and
R/o > Tg, respectively (using a threshold of Tg = 1 to switch between the
cases). Note that the two approximations are generally not continuous at the
threshold value Tg. However, for our model fitting approach a continuous and
smooth model function is required (see Sect. 3 for details). Therefore, based on
these two approximations, we have developed a combined model using a Gaus-
sian error function as a blending function such that for all ratios R/co always the
approximation with the lower approximation error is used. The blending func-
tion has two fixed parameters for controlling the blending effect, i.e. a threshold
T3 which determines the ratio R/o where the approximations are switched and
a standard deviation og which controls the smoothness of switching. We deter-
mined optimal values for both blending parameters (see Sect. 2.2 for details).

The 3D cylindrical model can then be written as (using x = (z,y,2)")

R
goytinder (X, R,0) = gpisk<(r, R, 0) (1 - 45@(; - T¢>) +

R
i (1R ) (=T ) 3)
where 2R2 __on?
9pisk<(r, R,0) = yroany-- I (4)
cr—1
9pisk>(r, R,0) = & ( 201 + 01) ) (5)

2 o2 + x2 + y? R? )1/3
cGl=-0Yt— "<
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Fig. 2 shows 1D cross-sections (for different ratios R/o) of the exact Gaus-
sian smoothed cylinder gp;si (numerically integrated), the two approximations
9Disk< and gpisk>, and our new model gcyiinder- It can be seen that our model
approximates the exact curve very well (see the positive axis). In addition, we
include in our model the intensity levels ag (surrounding tissue) and a; (vessel)
as well as a 3D rigid transform R with rotation parameters @ = (a, 8,7)" and
translation parameters t = (g, Yo, zo)T. This results in the parametric intensity
model with a total of 10 parameters p = (R, ag, a1,0,a, 3,7, Zo, Yo, 20):

gM,Cylinder (X, p) =ag + (al - aO) gcylinder (R (X, a, t) , R, 0) (7)
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Fig. 2. For different ratios of R/o = 1.0;3.0;8.0 (from left to right), the exact curve
gpisk of a 1D cross-section of a Gaussian smoothed disk is given (grey curve) as well
as the approximations gpisk< and gpisk> (dashed resp. dotted curve for the negative
axis) and the new model goyiinder (dashed curve for the positive axis).

2.2 Optimal Values Tg and og for the Blending Function

In order to determine optimal values T and o for the blending function used
in (3), we computed the approximation errors of the approximations gp;sk< and
gpisk> for different values of o = 0.38,0.385,...,0.8 and fixed radius R = 1
(note, we can fix R as only the ratio R/o is important). The approximation
errors were numerically integrated in 2D over one quadrant of the smoothed
disk (using Mathematica). From the results (see Fig. 3 left and middle) we found
that the approximation errors intersect at /R = 0.555 + 0.005 in the L1-norm
and at o/R = 0.605 £ 0.005 in the L2-norm. We here chose the mean of both
intersection points as threshold, i.e. Tg = 1/0.58 = 1.72. It is worth mentioning
that this value for T is much better than Tg = 1 originally proposed in [1]. For
o we chose a value of 0.1. From further experiments (not shown here) it turns
out that these settings give relatively small approximation errors in both norms.
Tt nicely turns out (see Fig. 3 left and middle) that our model not only combines
the more accurate parts of both approximations but also has a lower error in the
critical region close to Tg, where both approximations have their largest errors.

2.3 Analysis for Thin Structures

For thin cylinders, i.e. R/oc < Tg, our model goyiinder is basically the same as
the approximation gp;sk<, which has the following remarkable property for some

factor f with 0 < f < fraz = /1 +40%2/R?:

1
a gDisk< ('f', R7 U) = % 9Disk< (’I", R' = fR7 o' = 5\/40-2 + R2 (]- - f2)) (8)

where a represents the contrast a; — ag of our model gar,cyiinder and o’ = a/ f2.
This means that this function is identical for different values of f, i.e. different
settings of R'(f), o'(f), and a'(f) generate the same intensity structure. This
relation is illustrated for one example in Fig. 3 (right). As a consequence, based
on this approximation it is not possible to unambiguously estimate R, o, and a
from intensities representing a thin smoothed cylinder. In order to uniquely es-
timate the parameters we need additional information, i.e. a priori knowledge of
one of the three parameters. With this information and the ambiguous estimates
we are able to compute f and subsequently the remaining two parameters.
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Fig. 3. For different values of o = 0.38,0.385,...,0.8 and radius R = 1, the errors of
the approximations gp;sk< and gp;sk> (dark resp. light gray) as well as the error of the
new model gcyiinder (black) are shown for the L1-norm (left) and L2-norm (middle).
The right diagram shows R'(f), o' (f), and a’(f) for a varying factor f between 0 and
fmaz (for fixed R = 0.5, 0 = 1, a = 1). The vertical dashed line indicates the ratio

f =R/o =Ts, i.e. only the left part of the diagram is relevant for gpisk<-
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Obviously, it is unlikely that we have a priori knowledge about the radius of
the vessel as the estimation of the radius is our primary task. On the other hand,
even relatively accurate information about the smoothing parameter o will not
help us much as can be seen from (8) and also Fig. 3 (right): o’(f) is not changing
much in the relevant range of f. Therefore, a small deviation in ¢ can result in a
large deviation of f and thus gives an unreliable estimate for R. Fortunately, the
opposite is the case for the contrast a’(f). For given estimates R and a as well as
a priori knowledge about a, we can compute f = \/a/a and R = R/ f = R+/a/a.
For example, for an uncertainty of £10% in the true contrast a the computed
radius is only affected by ca. £5%, and for an uncertainty of —30% to +56%
the computed radius is affected by less than 20%. Note, this consideration only
affects thin vessels with a ratio R/o < T = 1.72, i.e. for typical values of o = 1
voxel and thus a radius below 2 voxels, the error in estimating the radius is
below 0.2 voxels even for a large uncertainty of —30% to +56%.

We propose two strategies for determining a. In case we are segmenting a
vessel with varying radius along the vessel, we can use the estimate of the contrast
in parts of the vessel where R/o > Tg (here the estimates of the parameters are
unique) for the other parts as well. In case of a thin vessel without thicker parts
we could additionally segment a larger close-by vessel for estimating the contrast,
assuming that the contrast is similar in this region of the image.

Standard approaches for vessel segmentation based on a Gaussian function
(e.g., [8],[7],[5]) only estimate two parameters: the image contrast a, and a stan-
dard deviation o,. Assuming that the image intensities are generated by a Gaus-
sian smoothed cylinder based on gpisi<, we can write a, = 2aR?/(40% + R?)
and 0, = V402 + R?/2, see (4). Often, the radius of the vessel is defined by the
estimated standard deviation o,, which implies that o = RV/3/2 holds. However,
this is generally not the case and therefore leads to inaccurate estimates of R.

3 Incremental Vessel Segmentation and Quantification

To segment a vessel we utilize an incremental process which starts from a given
point of the vessel and proceeds along the vessel. In each increment, the parame-
ters of the cylinder segment are determined by fitting the cylindrical model in (7)
to the image intensities g(x) within a region-of-interest (ROI), thus minimizing
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Fig. 4. Estimated radius R for 102 segments of a smoothed straight 3D cylinder with
settings R = 2, 0 = 1, ap = 50, and a1 = 150 as well as added Gaussian noise (o, = 10).
In addition, one 2D cross-section of the 3D synthetic data is shown.

erROI (gm,cytinder (X,P) — g (x))2 o

For the minimization we apply the method of Levenberg-Marquardt, incorpo-
rating 1lst order partial derivatives of the cylindrical model w.r.t. the model
parameters. The partial derivatives can be derived analytically. The length of
the cylinder segment is defined by the ROI size (in our case typically 9-21 vox-
els). Initial parameters for the fitting process are determined from the estimated
parameters of the previous segment using a linear Kalman filter, thus the incre-
mental scheme adjusts for varying thickness and changing direction.

4 Experimental Results

4.1 3D Synthetic Data

In total we have generated 388 synthetic 3D images of straight and curved tubu-
lar structures using Gaussian smoothed discrete cylinders and spirals (with dif-
ferent parameter settings, e.g., for the cylinders we used radii of R = 1,...,9
voxels, smoothing values of ¢ = 0.5,0.75, .. .,2 voxels, and a contrast of 100 grey
levels). We also added Gaussian noise (o, = 0,1, 3,5,10,20 grey levels). From
the experiments we found that the approach is quite robust against noise and
produces accurate results in estimating the radius as well as the other model
parameters (i.e. contrast and image smoothing as well as 3D position and orien-
tation). As an example, Fig. 4 shows the estimated radius for 102 segments of a
relatively thin smoothed cylinder. The correct radius could be estimated quite
accurately within £0.06 voxels along the whole cylinder. Fig. 5 (right) shows the
differences of the estimated radius to the true radius of smoothed cylinders for
a range of different radii (for o = 1 and o, = 10). It can be seen that the error
in the estimated radius is in all cases well below 0.1 voxels. As a comparison we
also applied a standard approach based on a 3D Gaussian line. To cope with the
general limitations of the Gaussian line approach (see Sect. 2.3), we additionally
calibrated the estimated radius (assuming an image smoothing of o = 1, see [5]
for details). It can be seen that the new approach yields a significantly more
accurate result in comparison to both the uncalibrated and calibrated Gaussian
line approach (Fig. 5 left and middle). Fig. 6 shows segmentation results of our
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Fig. 5. Differences of the estimated radius (mean over ca. 99 segments) and the true
radius for a synthetic straight cylinder with different radii R = 1,...,9 for the un-
calibrated (left) and calibrated Gaussian line model (middle), as well as for the new
cylindrical model (right). The dashed lines highlight the interval from -0.1 to 0.1 voxels.

Fig. 6. Segmentation results of applying the cylindrical model to 3D synthetic data of
a spiral (left) and a screw-like spiral (right). For visualization we used 3D Slicer [4].

new approach for a spiral and a screw-like spiral (for a radius of R = 2 voxels).
It turns out that our new approach accurately segments curved structures of
varying curvature, i.e. the estimated radius is within +0.1 voxels to the true
radius for nearly all parts of the spirals. Larger errors only occur for the last
part of the innermost winding, where the curvature is relatively large.

4.2 3D Medical Images

With our approach both position and shape information (radius) are estimated
from 3D images. Fig. 7 shows segmentation results of applying the new cylin-
drical model to 3D MRA images of the human pelvis and heart. Note that for
the segmentation of the vessel trees we used starting points at each bifurcation.
It can be seen that arteries of quite different sizes and high curvatures are suc-
cessfully segmented. As a typical example, the computation time for segmenting
an artery of the pelvis (see Fig. 7 left, main artery in left branch including the
upper part) using a radius of the ROI of 10 voxels is just under 4min for a total
of 760 segments (on a AMD Athlon PC with 1.7GHz, running Linux).

5 Discussion

The new 3D cylindrical intensity model yields accurate and robust segmentation
results comprising both position and thickness information. The model allows
to accurately segment 3D vessels of a large spectrum of sizes, i.e. from very thin
vessels (e.g., a radius of only 1 voxel) up to relatively large arteries (e.g., a radius



Fig. 7. Segmentation results of applying the new cylindrical model to arteries of the
pelvis (left and middle) as well as to coronary arteries and the aorta (right).

of 14 voxels for the aorta). Also, we pointed out general limitations in the case of
thin structures and disadvantages of approaches based on a Gaussian function.
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